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Abstract
This paper introduces an effort in the semantic analysis of natural language text based on
ontologies and discusses the merits of using ontologies in semantic analysis.  The semantic
representation we use is based on discourse representation theory (DRT).  As our ontology is
written in OWL-DL and the semantic representation in RDF, the merits of using the Semantic Web
standards will also be discussed.

1. Introduction
This paper illustrates an effort in semantic analysis of natural language text based on ontologies1.
The distinctive feature of our semantic analysis is that its semantic representation is modeled
with RDF graphs semantically disciplined with ontologies written in OWL.  The reason for the
use of RDF and OWL is that the Semantic Web technology has been emerging as the tool for
representing and processing semantics and ontologies [1].  As it is crucial for semantic
representation that its terms (elements) are defined in a definite way, ontologies are an
indispensable part of semantic representation.  Yet ontologies alone do not do the job; we need
certain inference mechanism to derive meaningful results from semantic representation and
ontologies.  Here, the Semantic Web technology helps us with its representation standards (RDF
as the general representation scheme and OWL as the language for representing ontologies) and
its tools for inference.
The following sections describe how natural language semantics is represented in graphs, how

semantic representation is related to ontologies or what kinds of ontologies are required for
representing natural language semantics, how semantic analysis proceeds with syntactic analysis,
lexicons and ontologies, and how semantic analysis is utilized for practical purposes.

2. Semantic Representation in Graphs
Our semantic representation draws most upon DRT (Discourse Representation Theory) [2] and
SDRT [3] (“S” stands for “Segmented”).  (S)DRT uses semantic representation called DRS
(Discourse Representation Structure), which is a nested structure in which logical terms and
predicates are placed.  SDRT is a theory in dynamic semantics and purports to explain various
discourse phenomena as well as semantics of simple sentences (and the versatility is the reason
for our adoption).
Another feature of our semantic representation is that it has a graph representation.  The

reason for this is that we want our system to work with the Semantic Web, whose data
representation model is in the graph form (i.e., RDF).  While a DRS is not normally considered as
a graph, there are theories that use semantic representations in graph forms.  One example is
Conceptual Graphs proposed by Sowa [4].  Conceptual Graphs represent a set of predicate logic
formulas as a graph.  Another example is CDL (Conceptual Description Language) proposed by
Yokoi et al [5].  To be more specific, both Conceptual Graphs and CDL are hyper-graphs, i.e.,
nested graphs having sub-graphs as their nodes.  Such nested structure or hyper-graphs are
required, for example, for representing nested sentences.
                                               
1 It is, of course, not in the sense of philosophy but that of artificial intelligence.
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Now, as a DRS is nested structure containing predicate logic formulas, it can be converted into
graphs in a fairly straightforward way.  To represent predicate logic formulas in graphs, we can
draw upon Conceptual Graphs.  The nested structure of a DRS can be represented as a hyper-
graph.
Here, we turn to the issue of representing hyper-graphs in RDF.  As RDF is nothing but a

graph representation, non-hyper-graphs can be represented in RDF with ease.  There are at least
two ways to represent hyper-graphs in RDF.  In one way, a hyper-graph is represented in a single
graph that includes sub-graphs and nodes representing the sub-graphs.  A sub-graph is
represented by a node representing the sub-graph itself, nodes within it and links between the
sub-graph node and the nodes within.  In another way, a hyper-graph is represented with a
number of graphs and graph nesting is represented with a statement whose object is a graph ID
(or URL).  While the former is prima facie simpler (it only has one graph for representing a
hyper-graph), the latter seems to be more straightforward way in terms of representing hyper-
graphs.  The former requires additional inference mechanism to suppress unwanted inference
across sub-graphs (you shouldn’t infer a fact from an expression in an ‘opaque’ context such as
an embedded belief content).  The latter also requires mechanisms to handle inference across
sub-graphs.  We have chosen the latter way with the hope that we can build inference
mechanism for it based on pre-existing inference mechanism rather than making inference
mechanism from scratch for the former way.  There is also a public mechanism for supporting
the latter way: SPARQL [6], the official querying language for RDF, supports ‘named graphs’ so
that statements in a hyper-graphs can be retrieved.

3. Ontologies and Semantic Representation
An ontology in a broad sense is a set of rules for interpreting a system of symbols, or more
practically, a set of inference rules with which machines draw inference over symbols.  As
semantic representation is a system of symbols, machines would need an ontology for drawing
inferences.  In contemporary AI, an ontology is the description of classes and relations in the
domain of discourse.  For example, an ontology may contain the description that an instance of
the pencil class is an instance of the physical object class or color is an attribute taking a physical
object as its subject.  Inference mechanism uses descriptions in an ontology to draw or constrain
inferences.
While inference based on ontologies can be used to draw implicit information from a given set

of semantic representation in a knowledge base, it can also be used in semantic analysis or the
process to create semantic representation from text.  This is because semantic analysis uses
rules and rules require generalization.  For an ontology can contain a hierarchy of concepts, it
provides with abstract concepts so that rules can be tersely written.
We have been developing ontologies for representing natural language semantics (currently

not public) [6].  Its upper-most part is based on SUMO produced by IEEE [7][8], but we have
intensively modified it.  We are also compiling a large ontology for Japanese vocabulary of the
size of 30,000, which is based on the EDR [9] concept dictionary.  The ontologies are written in
OWL-DL2.  While the disciplined development of the large ontology requires the upper ontology,
the latter has been heavily revised with the feedback from the development of the former, so that
the entire development process makes a virtuous circle.

4. Lexicons
Semantic analysis requires a lexicon, i.e., a dictionary that links terms in text and their senses.  A
term sense is described as a concept in an ontology or as a semantic representation whose

                                               
2 DL stands for description logic.
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expressions are defined in terms of ontologies.  This means that a lexicon requires an ontology.
In the area of lexicon study, the generativity has been an issue.  A word may have a core

meaning and derived meanings.  Or, a word may be a morphologically derived from another
with a derived sense from the sense of the original.  For semantic analysis, we would need a
lexicon that relates derived words and senses to their original so that the machine can tell the
relation between the senses of terms used in text.
We have been developing a Japanese lexicon.  Each term has multiple senses and each sense

is currently linked to a concept in an ontology.  The lexicon is generative in the following way to
curtail unnecessary sense entries:
 Part-of-speech alteration is semantically invariant.
The sense of the nominal form of a verb or adjective or the adverbial form of an adjective is
the same as that of the original.

 The role holder concept such as ‘teacher’ is represented with its role concept so that the
former can be dispensed with.

 Relational terms such as ‘father’ are represented with RDF properties3 so that the
corresponding classes such as the father class can be dispensed with.

 The meaning of the causative alteration of a verb is represented with a CausalProcess that
causes the StateOfAffairs represented by the original verb.

5. Particulars of Semantic Representation and Semantic Analysis
In the following, I shall describe how semantic analysis proceeds with ontologies and lexicons.
Concepts in our upper ontology (written in italic) are used for explanation.    The process has
been implemented on our prototype semantic analyzer, which converts dependency trees into
RDF hyper-graphs.  The implementation also gives feedback information for building the
ontology.  While the prototype is made for Japanese text, I shall use English examples for the
sake of explanation.
5.1. Atomic Situations and Complex Situations
An atomic situation is a situation that a simple sentence represents.  An atomic situation is
represented with an RDF graph.  States of affairs represented with sub-sentences in a coordinate
sentence may be represented in an atomic situation if the sentence describes the same situation.
A complex situation is a situation that a nested sentence represents.  A complex situation is
represented with a hyper-graph.  (See figures in Appendix.)  The translation of nested sentences
to the representation of complex situations is mechanical conversion of nesting.  A situation is
represented as an instance of IdeationalSituation in our upper ontology.  The ontology defines
various logical and discourse relations between situations such as precondition, consequent,
entails, and example (some of them are borrowed from SDRT).  For each situation, veridicality
and probability is calculated as its attribute.  In a probable or opaque context, veridicality
disappears.

5.2. Verbs and States of Affairs4

A state of affairs is what an argument structure of a predicate (verb) represents.  In our semantic
analysis, a verb is translated to an instance of the StateOfAffairs class and its case elements
(arguments) to individuals that have semantic role relations with the StateOfAffairs instance.
More specifically, a verb is associated with a subclass of StateOfAffairs via lexicon.  The
classification under StateOfAffairs is based on Beth Levin’s [10] through SUMO, but revised as
drawing upon LCS (the theory of Lexical Conceptual Structures) [11], adding classes such as

                                               
3 An RDF property is a binary relation
4 The author thanks Carol Tenny for useful discussions and advices on verb semantics.
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CausalProcess.  Our ontology defines semantic role properties such as actor, origin, theme and
method, drawing upon SUMO, LCS, GDA [12], EDR and UNL [13], among others.
Tense is represented with properties representing temporal relations such as before and after.

For example, past tense is represented as a situation whose occurring time is before that of the
utterance situation.
Polarity is represented with the RDF property truth having the value (TruthAttribute instance)

of True or False.  In our implementation, True is the default while negation maps to False.
As for aspects, our ontology defines the following aspectual Attributes drawing upon EDR and

Comrie [14]: Progressive, Completive, Habitual, Experiential, Persistent, Contingent and
Resultative, and also Aktionsart classes as subclasses of StateOfAffairs: State, Event (Non-State),
TelicProcess (change of state with a definite ending), Accomplishment (TelicProcess with a
preceding durative phase) and SemelfactiveEvent (momentary Event).  The aspect of verbs has
complicated interaction with the Aktionsart.  For example, while Japanese verbs representing
telic processes in the ‘-teiru’ form usually have the resultative aspect, those representing atelic
processes with the same ending usually have imperfective aspects.
As for modality, our ontology defines the following AlethicAttributes such as Necessity,

Impossibility and Possibility and DeonticAttributes such as Obligation and Permission, as well as
modal properties such as requires.
5.3. Nouns
A noun is by default translated to an individual (an instance of owl:Thing) with additional
information from the lexicon.  Proper names (e.g., “Cleopatra”) in most cases are translated to
the RDF resources representing the individuals the nouns denote (e.g., Cleopatra) or simply to
individuals having the name strings.  Most common nouns (such as ‘animal’) are also translated
to individuals but typed with classes (such as Animal) via lexicon.  As for nouns representing
roles such as “teacher,” special care is taken, for our ontology unifies role concepts and the
concept of role holders to reduce redundancy.  When a noun is associated with a role class, the
generated individual representation is not directly typed with the class but linked to an instance
of it with the property role.  (Fig. 1)  Similarly, a noun may be associated with an RDF property
such as father.  In such a case, the generated individual representation is linked to the attribute
as either its subject or object (the choice is made by information in the lexicon or other resources).
(Fig. 2)

Teacher

Agent

SocialRole

role

rdf:type

rdf:type

A SocialRole individual rdfs:subClassOf

Agentrdf:type

father

Agent
rdf:type

Fig 1 . Fig 2 .

The types of individuals
posited here (Agent) are
determined by the
domain and range of the
property father.

The individual
generated from the
term ‘a teacher’

The individual
generated from the
term ‘a father’

5.4. Plurality
A plural noun is translated to an instance of Collection.  For example, “people” is translated to
an instance of GroupOfAgents, a subclass of Collection whose members are defined to be
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instances of EmbodiedPerson.  A coordinate structures of nouns with the conjunction “and” is
also by default translated to an instance of Collection.
5.5. Adjectives and Adverbs
Adjectives and adverbs are normally translated to an instance of the abstract class Attribute.
Both predicative and attributive use of an adjective is translated to an individual linked to the
instance of Attribute with the RDF property attribute.  Gradable adjectives and adverbs are
translated to instances of GradableAttribute, which is a subclass of Attribute and comparative
expressions are expressed with comparative relations such as lessThan placed between instances
of GradableAttribute.
5.6. Modification
As mentioned earlier, the modification by adjectives and adverbs is represented with the property
attribute.  Generic modification with the preposition “of” (or the postposition “の” in Japanese) is
represented with the property related.  Modification with more specific prepositions is translated
to appropriate sub-properties of related.
5.7. Quantification
Logical quantification requires quantifiers and nested representation of scope.  Our semantic
representation regards existential quantification as default and for universal quantification, the
attribute All is given to the individual to be quantified.  Conceptual Graphs use similar treatment
for quantification.  Our ontology defines other quantifiers such as This, That, Most and Generic.
Nested scopes can be represented with nested situations, which are in turn represented with a
hyper-graph.  To note, scopes do not always have to be specified (underspecification).
5.8. Utterances
A sentence is translated to an instance of Utterance.  Utterance is a subclass of Expressing and
LinguisticCommunication, which are subclasses of IntentionalProcess.  As an Utterance is a
StateOfAffairs, it takes semantic roles such as actor, and the situation where an Utterance occurs
can have properties such as time (see Fig 4.3 in Appendix). Utterance has subclasses such as
Ordering, Questioning, Requesting and Declaring as its speech act types.  For setting these types,
we have drawn upon FIPA performatives [15], GDA communicative functions and attributes in
the EDR corpus.

6. Ambiguity
In our semantic representation, each sense of ambiguity is explicitly represented with an RDF
graph.  For example, the senses of the word “bank” registered in the lexicon are placed in
separate RDF graphs from the main graph where the individual generated from the noun is
placed (Fig. 3).  Each graph can have its probability given by the lexicon or calculation based on
collocation.

Translocation Bank1“Tom”
#

rdf:typestringValue

theme destination

Node1

Node1

Bank2Node1

Financial Institution

(River) Bank

Graph 2

Graph 1

Graph 3

0.8
Graph 2

0.2
Graph 3 Fig. 3

Representation for the sentence “Tom goes
to the bank.”  The term ‘bank’ has two
senses represented in Graphs 2 & 3, whose
probabilities are represented in Graph 4.

Graph 4
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  Recent theories of semantic representation such as MRS [16] and SDRT (glue logic) have the
mechanism for underspecification, where ambiguity is left implicit.  With our graphic semantic
representation, underspecification can be realized in a straightforward way.  For example,
dependency relations or discourse relations can be underspecified just by not adding a graph
edge (RDF property) representing these relations.

7. Related Works
There are various attempts to translate (controlled) human languages into semantic
representation.  Some of them are based on ontologies.  The table below is a non-exhaustive list
of such systems.

System Source Language Sem. Reps. Base Ontology Format
CLCE [17] Controlled English FOL -
ACE [18] Controlled English DRS -
UNL [19] Various Languages UNL -
NKRL [20] English NKRL Original
Cyc [21] English CycL CycL
Ours Japanese DRS/RDF OWL-DL-based

Table 1

In comparison, the characteristics of our system are summarized as follows.
 The source language is not controlled.
 The analysis is based on independent ontologies written in OWL-DL.
 The ontologies draw on linguistic theories and are moderately formal.

8. Further Development
This last section discusses things to be done for better semantic analysis.  While we have built a
basic mechanism for building DRT-like representation from Japanese text, the first issue to be
tackled is the accuracy of analysis.  Even if the dependency analyzer gives the correct result, the
semantic analyzer may not produce correct representation.  One source of errors is semantic
role assignment, which arises from semantic irregularity in the relation among assigned semantic
classes for verbs, semantic roles and case markers.  Another source is idiomatic expressions.
These irregularities would be handled by hand-coded rules with ontological terms.
To draw factual information from text, one thing the analyzer must do (besides textual

inferences) is to resolve anaphors.  In Japanese, pronouns are often omitted (ellipsis) so that the
system should recover ‘zero
pronouns’ before resolving the anaphor.  Our linguistic ontology is
useful for recovering pronouns and resolving anaphor, for it has the information on the obligatory
semantic roles for StateOfAffairs subclasses and the categories (range) of semantic roles (the
information is coded with owl:someValuesOf statements).  The system can recover omitted
semantic role elements for a verb by associating it with the obligatory semantic roles of
associated verb classes.  The ontology helps resolving anaphor by providing semantic categories
for anaphors and their antecedents to be matched.

Finally, I give a few words on practical side of this research.  Currently, we are developing a
semantic search system combining the semantic analyzer and public domain tools for semantic
repositories.  Such a system may serve as a new kind of text retrieval tools and generate good
input for text mining.
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Appendix
Semantic representation of the sentence “Tom believes a cat chased a hen and a duck” in RDF.
(Actual analysis was done with the equivalent sentence in Japanese.  Class names in the figures
have been translated into English.)
Fig 4.1 is a graph showing Tom’s believing the IdeationalSituation HID03 as the content.
Fig 4.2 is a graph showing the content of the belief.  The past tense is indicated with the property
GUO:before and the time of utterance /EID1_T defined in Fig 4.3.  The conjunction “a hen and
a duck” is represented as a collection.
Fig 4.3 is the base graph to represent the utterance itself.

Fig 4.1 Main Graph

Fig 4.2 Belief Content

Fig 4.3 Utterance


